Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Physiol Rep ; 10(16): e15391, 2022 08.
Article in English | MEDLINE | ID: covidwho-1994596

ABSTRACT

The acute phase of COVID-19 has been well studied, however with increasing post-acute COVID-19 syndrome, much is unknown about its long-term effects. A common symptom in both the acute and post-acute phases has been fatigue, assessed predominantly qualitatively. Here we present a case study objectively assessing neuromuscular fatiguability in a young male (27 year, 1.85 m, 78 kg) who continues to experience COVID-19 related fatigue and cognitive dysfunction, including other symptoms, 12+ months post-infection. Prior to infection, he was part of a neuromuscular study forming the basis of our pre-COVID-19 results. The study was repeated 12 months post-COVID-19 infection. Muscle strength, endurance, torque steadiness, voluntary activation, twitch properties, electromyography, and compound muscle action potential were obtained and compared pre- and post-COVID-19. All measurements were done using a dorsiflexion dynamometer in which the participant also was asked to produce a one-minute fatiguing maximal voluntary contraction. Muscle strength, voluntary activation, and fatigability (slope of torque) showed no meaningful differences, suggesting intrinsic neuromuscular properties are not affected. However, torque steadiness was impaired three-fold in the post- compared with pre-COVID-19 test. The participant also reported a higher level of perceived exertion subjectively and a continued complaint of fatigue. These findings indicate that muscle fatiguability in post-acute COVID-19 syndrome may not be a limitation of the muscle and its activation, but a perceptual disconnect caused by cognitive impairments relating to physical efforts. This case report suggests the potential value of larger studies designed to assess these features in post-acute COVID-19 syndrome.


Subject(s)
COVID-19 , Isometric Contraction , COVID-19/complications , Electromyography/methods , Fatigue/etiology , Humans , Isometric Contraction/physiology , Male , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Muscles , Torque , Post-Acute COVID-19 Syndrome
2.
J Pain ; 23(11): 1923-1932, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1956236

ABSTRACT

Pain is a common symptom reported in COVID-19 patients. Impaired endogenous pain-modulatory mechanisms such as conditioned pain modulation (CPM), and exercise-induced hypoalgesia (EIH) have been found in chronic pain conditions but is often overlooked in acute conditions that evoke painful symptoms, such as COVID-19. The purpose was to compare pressure-pain sensitivity, CPM, and EIH function among individuals who previously had COVID-19, both symptomatically and asymptomatically, and a healthy control group. Pressure pain thresholds of 59 participants were assessed in the forearm and leg using a pressure algometer before and after 1) submersion of their dominant foot in cold water (2°C) for 1min; and 2) isometric knee extension performed to task-failure at 25% of their maximal contraction. The CPM response was attenuated in individuals who were infected with symptomatic COVID-19 (N = 26) compared to asymptomatic COVID-19 (N = 13) in arm (-1.0% ± 20.3 vs 33.3% ± 26.2; P < .001) and leg (12.8% ± 22.0 vs 33.8% ± 28.2; P = .014) and compared to controls (N = 20) in arm only (-1.0% ± 26.2 vs 23.4% ± 28.2; P = .004). The EIH response was not different between groups. CPM was impaired in individuals who had symptomatic COVID-19, which may have long-term implications on pain modulation. PERSPECTIVE: This study reveals that CPM was impaired in individuals who had symptomatic COVID-19 during the first wave of COVID-19, pre vaccine. These findings present a preliminary motive to study the long-term implications of COVID-19 and its effects on pain modulation.


Subject(s)
COVID-19 , Chronic Pain , Humans , Young Adult , Isometric Contraction/physiology , COVID-19/complications , Exercise/physiology , Pain Threshold/physiology , Chronic Disease
3.
Int J Environ Res Public Health ; 19(5)2022 02 24.
Article in English | MEDLINE | ID: covidwho-1736898

ABSTRACT

(1) Background: Childhood obesity is an important public health problem. Children with overweight or obesity often tend to show the pediatric inactivity triad components; these involve exercise deficit disorder, pediatric dynapenia, and physical illiteracy. The aim of the study was to examine the influence of an active video games (AVG) intervention combined with multicomponent exercise on muscular fitness, physical activity (PA), and motor skills in children with overweight or obesity. (2) Methods: A total of 29 (13 girls) children (10.07 ± 0.84 years) with overweight or obesity were randomly allocated in the intervention group (AVG group; n = 21) or in the control group (CG; n = 8). The intervention group performed a 5-month AVG training using the Xbox 360® with the Kinect, the Nintendo Wii®, dance mats, and the BKOOL® interactive cycling simulator, combined with multicomponent exercise, performing three sessions per week. The control group continued their daily activities without modification. Weight, PA using accelerometers, and motor competence using the Test of Gross Motor Development 3rd edition were measured. Muscular fitness was evaluated through the Counter Movement Jump height, maximal isometric strength of knee extension and handgrip strength, and lean mass using Dual-energy X-ray Absorptiometry. Mann-Whitney U and Wilcoxon signed rank tests were performed. The biserial correlation coefficients (r) were calculated. Spearman's correlation coefficients among PA, muscular fitness, and motor competence variables were also calculated. (3) Results: The AVG group significantly increased their knee extension maximal isometric strength (4.22 kg; p < 0.01), handgrip strength (1.93 kg; p < 0.01), and jump height (1.60 cm; p < 0.01), while the control group only increased the knee extension maximal isometric strength (3.15 kg; p < 0.01). The AVG group improved motor competence and light physical activity (p < 0.05) and decreased sedentary time (p < 0.05). Lean mass improved in both AVG group and CG (p < 0.05). Lastly, the percentage of improvement of motor skills positively correlated with the percentage of improvement in vigorous PA (r = 0.673; p = 0.003) and the percentage of improvement in CMJ (r = 0.466; p = 0.039). (4) Conclusions: A 5-month intervention combining AVG with multicomponent training seems to have positive effects on muscle fitness, motor competence, and PA in children with overweight or obesity.


Subject(s)
Exercise , Motor Skills/physiology , Pediatric Obesity , Physical Fitness , Video Games , Body Mass Index , Child , Female , Hand Strength/physiology , Humans , Isometric Contraction/physiology , Knee/physiology , Male , Pediatric Obesity/therapy , Physical Fitness/physiology , Video Games/classification
4.
Biomed Res Int ; 2021: 2624860, 2021.
Article in English | MEDLINE | ID: covidwho-1484096

ABSTRACT

BACKGROUND: People with multiple sclerosis (MS) suffer from symptoms related to neural control, such as reduced central activation, lower muscle activity, and accentuated spasticity. A forced 9-week home confinement related to COVID-19 in Spain may have worsened these symptoms. However, no study has demonstrated the impact of home confinement on neuromuscular mechanisms in the MS population. This study was aimed at analyzing the effects of a 9-week home confinement on central activation, muscle activity, contractile function, and spasticity in MS patients. METHODS: Eighteen participants were enrolled in the study. Left and right knee extensor maximum voluntary isometric contraction (MVIC), maximal neural drive via peak surface electromyography (EMG) of the vastus lateralis, central activation ratio (CAR), and muscle contractile function via electrical stimulation of the knee extensor muscles, as well as spasticity using the pendulum test, were measured immediately before and after home confinement. RESULTS: Seventeen participants completed the study. CAR significantly decreased after lockdown (ES = 1.271, p < 0.001). Regarding spasticity, there was a trend to decrease in the number of oscillations (ES = 0.511, p = 0.059) and a significant decrease in the duration of oscillations (ES = 0.568, p = 0.038). Furthermore, in the left leg, there was a significant decrease in the first swing excursion (ES = 0.612, p = 0.027) and in the relaxation index (ES = 0.992, p = 0.001). Muscle contractile properties, MVIC, and EMG variables were not modified after confinement. CONCLUSIONS: The results suggest that a home confinement period of 9 weeks may lead to an increase in lower limb spasticity and a greater deficit in voluntary activation of the knee extensors.


Subject(s)
COVID-19 , Multiple Sclerosis/physiopathology , Muscle, Skeletal/physiopathology , Communicable Disease Control , Electric Stimulation , Electromyography , Female , Humans , Isometric Contraction , Knee/physiology , Male , Middle Aged , Muscle Contraction , Muscle Spasticity , Muscle, Skeletal/physiology , Quadriceps Muscle/physiology
5.
Int J Environ Res Public Health ; 18(11)2021 05 23.
Article in English | MEDLINE | ID: covidwho-1266716

ABSTRACT

Back pain is one of the most costly disorders among the worldwide working population. Within that population, healthcare workers are at a high risk of back pain. Though they often demonstrate awkward postures and impaired balance in comparison with healthy workers, there is no clear relationship between compensatory postural responses to unpredictable stimuli and the strength of related muscle groups, in particular in individuals with mild to moderate back pain. This paper presents a study protocol that aims to evaluate the relationship between peak anterior to peak posterior displacements of the center of pressure (CoP) and corresponding time from peak anterior to peak posterior displacements of the CoP after sudden external perturbations and peak force during a maximum voluntary isometric contraction of the back and hamstring muscles in physiotherapists with non-specific back pain in its early stages. Participants will complete the Oswestry Disability Questionnaire. Those that rate their back pain on the 0-10 Low Back Pain Scale in the ranges 1-3 (mild pain) and 4-6 (moderate pain) will be considered. They will undergo a perturbation-based balance test and a test of the maximal isometric strength of back muscles and hip extensors. We assume that by adding tests of reactive balance and strength of related muscle groups in the functional testing of physiotherapists, we would be able to identify back problems earlier and more efficiently and therefore address them well before chronic back disorders occur.


Subject(s)
Hamstring Muscles , Low Back Pain , Physical Therapists , Cross-Sectional Studies , Humans , Isometric Contraction , Muscle Strength , Muscle, Skeletal , Postural Balance
6.
J Electromyogr Kinesiol ; 59: 102566, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1260782

ABSTRACT

We aimed to investigate the impact of time on fine-wire (fw) electromyography (EMG) signal amplitude, and to determine whether any attenuation is confounded by task type. Twenty healthy participants were instrumented with fw and surface (s) EMG electrodes at the biceps brachii bilaterally. Participants held a weight statically with one arm and with the other arm either repeated the same task following a maximum voluntary contraction (MVC) or repeated dynamic elbow flexion/extension contractions. Each task was repeated for 30 s every five minutes over two hours. EMG amplitude was smoothed and normalized to time = 0. Stable median power frequency of the s-EMG ruled out the confounding influence of fatigue. Repeated-measures ANCOVAs determined the effect of electrode type and time (covariate) on EMG amplitude and the confounding impact of task type. During the isometric protocol, fw-EMG amplitude reduced over time (p = 0.002), while s-EMG amplitude (p = 0.895) and MPF (p > 0.05) did not change. Fw-EMG amplitude attenuated faster during the dynamic than the isometric protocol (p = 0.008) and there was evidence that the MVC preceding the isometric protocol impacted the rate of decline (p = 0.001). We conclude that systematic signal attenuation of fw-EMG occurs over time and is more pronounced during dynamic tasks.


Subject(s)
Elbow Joint , Isometric Contraction , Electromyography , Humans , Muscle, Skeletal , Range of Motion, Articular
SELECTION OF CITATIONS
SEARCH DETAIL